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With phases expressed in cycles so that 0 < f0 < 1 it is possible with a single symbol x, in the range 0 
to 1, to represent several phases, say m, by 

fat = nix mod (1) 

where i runs from 1 to m and the integers, n~, are referred to as 'magic integers'. A starting set of phases 
may consist of some which fix the origin and enantiomorph, some known by ~i relationships for 
example and others given magic-integer representation in terms of x, y and z. Relationships between 
the starting-set phases then appear in the form 

Hx+ Ky+ Lz+b~_O , 
and maxima of the function, 

qz= ~ [E,,E2,E~rl cos {2n(Hrx + K,y+ L,z +b)} , 
r 

lead to sets of possible values of the unknown phases in the starting set of reflexions. By means of the 
magic-integer process complex structures requiring very large starting sets may be tackled. Examples 
of the application of the method are given. 

Introduction 

The phase-permutation method as incorporated in the 
computer program M U L T A N  (Germain, Main & 
Woolfson, 1971) depends fairly critically on the preci- 
sion with which the first few phases are developed. 
The process is a stepwise one, and one or two bad 
phase relationships early on can lead to a completely 
wrong answer. This problem can normally be over- 
come by increasing the number of reflexions in the 
starting set and thereby bypassing the bad relationship. 
However, as the number of sets of phases developed 
is exponentially related to the size of the starting set, 
the number of phases that can be permuted is severely 
limited. If, for example, there were n variable reflexions 
in the starting set then 4" sets of phases would be devel- 
oped. Four variable phases, requiring 256 permuta- 
tions, is the limit of what could normally be contem- 
plated. 

The present work is aimed at developing a method 
by which phases can be allocated to a significantly 
larger set of starting reflexions than is feasible in the 
permutation method. While the method involves the 
use of the same relationships as does the permutation 
method it is not a 'stepwise' one and so should not be 
so sensitive to the occasional bad relationship. 

Magic integers - th~ basic concept 

In a normal application of the symbolic-addition pro- 
cess a number of phases may be expressed explicitly, 
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other phases are represented by symbols and further 
phases are generated in terms of these symbols. How- 
ever, if the number of symbols is too large, difficulties 
may arise and, for this reason, the number of symbols 
is usually kept to a minimum. 

For a general phase a symbol may turn out to have 
any value between 0 and 2n, and one usually hopes to 
get an indication for the phase through the symbolic- 
addition process. We have evolved a mathematical 
device, which we call 'magic integers', by which a single 
symbol may be made to represent several phases and 
this is now described. 

We take three phases ~01, ~0z, ~03 expressed in cycles so 
that 

0<rp< 1 (1) 

and set up the following equations 

rpl = 3x mod (1) 

~o2=4x mod (1) 

fp3= 5x mod (1). (2) 

The proposition we now examine is that, no matter 
what the values of ~o, for some value of x in the range 
0_<x< 1 the three equations can be approximately sa- 
tisfied. That this is so is best seen by considering some 
examples: 

(i) ~Pl = 0"3, ~02 = 0.2, ~03 = 0"7 with x = 0"766 
3x=2.298 and 3x mod (1)=0-298 
4x=  3.064 and 4x mod (1)= 0-064 

5x=3.830 and 5x mod (1)=0.830. 

The errors, 0.002, 0.136 and 0.130 cycles respectively, 
correspond to l, 49 and 47 °. 
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(ii) (,0t=0.8, ~02=0.6, ¢3=0.0  with x = 0 . 6 2 2  

3 x =  1.866 and 3x mod (1)=0-866 

4x = 2.488 and 4x rood (1) = 0.488 

5x=3 .110  and 5x mod (1 )=0 .110 .  

The errors in this case correspond to 24, 40 and 40 ° . 
These two examples are illustrated graphically in 

Fig. 1 which shows the three functions ¢ = 3x mod (1), 
~0=4x mod (1) and ¢ = 5 x  mod (1); the values of  x for 
the two examples are also shown. 

Magic-integer representation of  phases has thus far 
been described in terms of  the three integers 3, 4 and 5. 
It is possible, however, to use other  sets of  integers or, 
indeed, to have more than three integers. The accuracy 
with which phases can be represented by magic integers 
tends to increase with the magnitude of  the integers. 
On the other hand,  we shall show that  the use of  magic- 
integer representation of  phases is most economical  if 
the integers are small and, in practice, a compromise is 
sought between these conflicting requirements. 

Table 1 shows the characteristics of  various sets of  
magic integers. For  sets of  three integers it was possible 
to consider the phases ~0~ at intervals of  0.01. All pos- 
sible permutat ions of  (Pt, Cz, (P3 were generated and the 
values of  x giving the best fits found. It was then pos- 
sible to obtain a mean error and a maximum possible 
error for the integer set. For  sets containing more than 
three integers such a procedure was found to be too 
t ime-consuming and a less rigorous approach had to be 
adopted. In these cases 1000 random sets of  {o's were 
generated and the x's giving the best fits found. Whilst  
this probably  gave a good approximat ion to the mean 
error, the maximum error found by this method must 
be treated with some suspicion. Table 1 gives the mean 
and maximum errors for a selection of  the best sets 
found. 
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Fig. 1. The graph shows the functions e=3x  mod(1) (full 
line), @=4x mod(1) (dashed line) and ~p= 5x rood(l) (dotted 
line). The values of x giving matches with the sets of O's 
given in the text are indicated. 

Table 1. A comparison o f  possible sets o f  magic 
integers 

R.m.s. Maximum 
Integer set error error 

1 2 3 47 90 
1 3 4 42 79 
1 3 6 35 65 
1 4 16 23 43 
2 3 4 38 72 
2 3 7 33 65 
3 4 5 33 65 
3 4 6 34 65 
3 4 13 25 50 
3 5 6 33 65 
3 5 7 30 68 
4 5 6 31 65 
4 5 7 29 54 
4 5 21 23 43 
5 6 7 30 61 
5 6 31 23 54 
2 3 7 13 39 75 
3 4 5 6 46 83 
3 4 5 7 45 83 
3 4 5 13 40 72 
3 4 13 25 33 65 
4 5 7 10 38 75 
4 5 7 13 37 69 
4 5 21 41 28 56 
3 4 5 8 13 49 102 
3 4 5 9 12 51 93 
3 4 5 9 20 46 88 
3 4 5 21 28 42 83 
3 5 7 14 21 46 88 
4 5 6 11 17 48 93 
5 7 9 11 13 45 92 
5 7 9 11 20 45 90 
6 7 8 13 21 48 89 

13 15 17 19 21 45 85 
3 4 5 11 16 27 50 98 
3 4 5 12 15 19 53 98 
3 4 5 15 20 25 50 100 
3 4 5 30 40 50 44 87 
4 5 6 7 8 9 56 106 
5 7 9 11 13 15 53 99 
7 9 11 13 17 30 49 91 
7 10 13 16 19 22 52 98 
7 9 11 13 17 23 43 52 100 

17 23 29 33 37 63 100 44 87 
9 11 13 15 17 19 21 23 61 111 

13 17 19 23 25 27 34 61 54 106 
21 23 24 25 26 27 33 60 53 100 

Consider a 
represented 

@1=3x mod (1) ¢4=3y  mod (1) 

¢ 2 = 4 x  mod (1) ~ s = 4 y  rood (1) 

Ca = 5x rood (1) ¢6 = 5y mod (1) 

If  there is a phase relationship 

rp~ + ~03 + ~% +zr"~ 0 mod (1), 

this can be represented by 

3 x + 5 x + 5 y + z c ~ O  mod (1) 

or 
8 x +  5y+rc___0 mod (1).  

T h e  use  o f  m a g i c  integers  

situation where a number  of  phases are 
in the following manner :  

{07 = 3z mod (1) 

¢8=4z  rood (1) 

(pg=5Z mod (1). (3) 

(4) 

(6) 
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In general, any relationship involving the phases rep- 
resented by magic integers and fixed phases can be 
expressed as an equation of the type 

Hx+Ky+Lz+b~_O mod (1). (7) 

The n in equation (6) and the b in equation (7) arise 
because of translational symmetry in the space group 
and because the ~0's are considered only in one asym- 
metric unit of reciprocal space. 

At the beginning of the phase-determining process 
several phases will be known as a result of origin and 
enantiomorph definition and possibly of ~ relation- 
ships. If the phases of a number of reflexions can be 
represented by magic integers then there will be a 
number of ~2 relationships between these phases, 
which may be written in the cosine form 

cos {2n(Hx+Ky+Lz+b)}L1. (8) 

Where the symbol ~ means 'tends to be close to but 
must be less than'. We can express the condition that 
the relationships of type (8) should be satisfied as well 
as possible, and also take account of the strength of 
the relationships by looking for maxima of the function 

~v(x,y,z)= ~ [Ex,Ez,E3r[ cos {2n(H~x + K~y+ t,z + b,)}. 
r 

C9) 
These maxima may be sought by evaluating ~/(x,y,z) 
over the range 0 to 1 for each of the variables and, 
since this is a straightforward Fourier summation, it 
presents no difficulty. Adequate resolution can be ob- 
tained by evaluating the function at about four times 
the maximum-index points along each axis; hence the 
requirement to keep the magnitude of the magic in- 
tegers as low as possible. A high peak in the map can 
be translated into phases, and these phases should 
satisfy the phase relationships linking the phases in the 
initial set. 

In a test of this idea with a trial structure [the photol- 
ysis product of Karle, Karle & Estlin, (1967)], the 
largest peak was at x=0.59,  y=0-83 and z=0.78. This 
gave the results in Table 2. These calculated phases, 
together with those which fix the origin and enantio- 
morph, led directly to a solution of the structure. 

Table 2. Results for the trial structure 

Calculated Published 
phase phase 

3x 1.77 0.77 277 295 
4x 2.36 0"36 129 151 
5x 2-95 0.95 c~342 307 
3y 2"49 0.49 176 238 
4y 3.32 0.32 115 170 
5y 4.15 0.15 54 50 
3z 2"34 0"34 122 126 
4z 3-12 0"12 43 47 
5z 3"90 0"90 324 331 

A more demanding test of the method was made on 
hexahelicene (C26H16 , space group P212x21) for which 
MULTAN found only half the molecule, the rest being 
obtained by a recycling process (Declercq, Germain, 
Main & Woolfson, 1973). Four reflexions were used 
to define the origin and enantiomorph and the phases 
of the eight general reflexions at the bottom of the 
MULTAN convergence map were represented by 
magic integers. In this case four phases were repre- 
sented by each variable with the integer set 2, 3, 7, 13, 
only two variables being used. The twelve relationships 
between the eight phases were expressed in terms of 
magic integers and a map computed of the function 

~v(x,y)= ~ co, cos {2n(H,x+K,y+b,)}, (10) 
l 

where cot is the product of three normalized structure 
factors, as in (9). There were 47 maxima for which ~,/12 
_> 0.4. Of these the twelve highest peaks were examined 
and two were found to give sets of phases that were 
similar to those published. However, when these sets 
of phases were used as starting sets for the phase devel- 
opment section of MULTAN, they failed to give the 
structure. 

When the value of the invariant 

s=~01 + qh + ~o3+b (11) 

is represented in terms of magic integers there are four 
influences which cause it to deviate from 0 mod (2n). 
These are the value of s itself, and the errors in the 
representations of the three phases. It seems probable 
that, if we represent the phases ~0 precisely, the value of 
~, would be greater than that found from the Fourier 
map. In fact, it is possible to improve the accuracy of 
determination of the phases ~0 by starting with the 
magic-integer value for each phase and refining it 
independently using the maximization of ~, as a refine- 
ment criterion. The method which has been found to 
be quite effective and very rapid in refining the ¢ values 
is that of parameter shift. This consists of taking the 
rp's one at a time, changing their values in steps over a 
small range and shifting them to that value within the 
range which gives the maximum value of ~'. Three or 
four cycles of this process lead to a convergence to a 
maximum of ~v'(~0x, ~02, • • • ~0,) which is now considered 
to be 

~t'(~ol, q~2,.., cp,)= Z cot cos {2n(~oa, _+ ~2r-+ ~oar +b~)}. 
r 

(12) 

When this refinement was applied to the phase 
estimates for hexahelicene the value of ~,/12 increased 
from 0.7 to 0.99. Details of these results are given in 
Table 3, which shows that, although the mean devia- 
tion from the published pbases was not greatly im- 
proved, a more even distribution of deviations was 
obtained. When the refined phases were used as a 
starting set for phase determination an E map resulted 
which showed the whole structure. 
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Table 3. Summary of the results of magic integers 
for hexahelicene 

Set A Set B 
x=0-103 x=0.085 Refined phases Published 
y=0-887 y=0.904 Set A Set B phases 

qh 2x 74 60 44 50 75 
~z 3x 111 91 71 81 57 
q~3 7x 259 213 249 223 274 
q~4 13x 122 36 132 126 155 
¢Ps 2y 278 290 298 310 323 
~o6 3y 238 255 258 265 198 
tp7 7y 75 116 115 126 184 
tps 13y 193 268 182 188 119 

~/n 0-72 0.64 0.99 0.99 
Mean devia- } 
tion f rom 46 ° 67 ° 40 ° 42 ° 
published 
phases 

Conclusions 

We have shown that by the application of magic in- 
tegers it is possible to allocate phases to a starting set 
of reflexions in a less arbitrary manner than by the 
phase-permutation method. The resulting saving in the 
number of sets of phases to be developed may well be 
significant for structures that require a large starting 
set to obtain a solution. As a rough estimate, the time 
required for the magic-integer and refinement proce- 
dures is about the same as that required for the devel- 
opment of one or two complete sets of phases. Nor- 
mally the number of peaks in the 9, map is not too great 
and different peaks sometimes give virtually the same 
values for the individual ~0's. For structures for which 

MULTAN gives a solution by the permutation of 
phases then the use of magic integers can give a saving 
of computer time of between 50 to 75 %. In those cases 
where the convergence map gives poor phase develop- 
ment the phase-permutation method may be quite im- 
possible and the magic-integer approach is then ex- 
tremely valuable. 

The method is currently being developed by trying 
to accept a limited number of ~2 relationships before 
the allocation of magic integers. This is aimed at in- 
cluding more 5"2 relationships in the map and enabling 
about 30 or 40 reflexions to be phased. At present the 
procedure is handled by a separate computer program 
which is run between the CONVERGE and FASTAN 
procedures in MULTAN. A magic-integer routine will 
eventually be incorporated as an option in the MUL- 
TAN package. 

We wish to express our gratitude to the Science Re- 
search Council for support of this project and also to 
the Department of Computer Science of the University 
of York for computer services. One of us (M.M.W) is 
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References 

DECLERCQ, J. P., GERMAIN, G., MAIN, P. & WOOLFSON, 
M. M. (1973). Acta Cryst. A29, 231-234. 

GERMAIN, G., MAIN, P. t~ WOOLFSON, M. M. (1971). Acta 
Cryst. A27, 368-375. 

KARLE, I. L., KARLE, J. & ESTLIN, J. A. (1967). Acta Cryst. 
23, 494-500. 

Acta Cryst. (1975). A31, 56 

The Effect of Coulombic Interactions on the Calculated Crystal Structures of 
Benzene at Atmospheric and 25 kbar Pressure 

BY DAVID HALL 
Department of Chemistry, University of Auckland, Auckland, New Zealand 

AND DONALD E. WILLIAMS 

Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, U.S.A. 

(Received 1 April 1974; accepted 15 May 1974) 

The crystal structures of benzene I (orthorhombic) and high-pressure benzene II (monoclinic) were 
calculated at atmospheric pressure and 25 kbar pressure by minimization of the intermoleeular lattice 
energy subject to the pressure constraint. The first set of calculations used an atom-atom (exp-6) 
potential with no net coulombic charges on the atoms. The second set of calculations used an (exp-6-1) 
potential which placed charges of + 0" 18 electron on each atom of the benzene molecule. The no-charge 
calculation incorrectly predicted that benzene should be monoclinic at both atmospheric and 25 kbar 
pressure. The coulombic charge calculation correctly predicted the observed crystal transition, favoring 
the orthorhombic structure at atmospheric pressure but favoring the monoclinic structure at 25 kbar. 
In the latter calculations there were substantial coulombic contributions to the lattice energy. 

Introduction Smith, 1958) and by neutron diffraction at - 5 5  ° and 
- 135 ° (Bacon, Curry & Wilson, 1964). Since our cal- 

The crystal structure of benzene I has been determined culated model does not include vibrational effects, 
by X-ray diffraction at - 3 ° (Cox, Cruickshank & we will compare our results with the observed structure 


